Quantum Lobachevsky planes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Factorization in Quantum Planes

These results stem from a course on ring theory. Quantum planes are rings in two variables x and y such that yx = qxy where q is a nonzero constant. When q = 1 a quantum plane is simply a commutative polynomial ring in two variables. Otherwise a quantum plane is a noncommutative ring. Our main interest is in quadratic forms belonging to a quantum plane. We provide necessary and sufficient condi...

متن کامل

Quantum Orthogonal Planes:

We construct differential calculi on multiparametric quantum orthogonal planes in any dimension N . These calculi are bicovariant under the action of the full inhomogeneous (multiparametric) quantum group ISOq,r(N), and do contain dilatations. If we require bicovariance only under the quantum orthogonal group SOq,r(N), the calculus on the q-plane can be expressed in terms of its coordinates x, ...

متن کامل

Quantum Half-Planes via Deformation Quantization

We give an idea of constructing irreducible unitary representations of Lie groups by using Fedosov deformation quantization in the concrete case of the group Aff(R) of affine transformations of the real line. By an exact computation of the star-product and the operator ˆ̀Z , we show that the resulting representations exhausted all the irreducible representations of this groups.

متن کامل

Models of Quantum Space Time: Quantum Field Planes

Quantum field planes furnish a noncommutative differential algebra Ω which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data requirered in their construction come from a quantum field theory. The basic idea is to replace the ground field C of quantum planes by the noncommutative algebra A of observables of the quantum field theory. HUTMP 94-B335...

متن کامل

On Deformation of Elliptic Quantum Planes

Elliptic Quantum Planes means here non-commutative deformations of the complex projective plane P(C). We consider deformations in the realm of non-commutative (complex) algebraic geometry. As we recall in the first section, elliptic modulus parameter enters into the game. Hence the adjective “elliptic” is used. Note also that, in that world, the complex projective line P(C), namely the Riemann ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 1996

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.531560